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Abstract
The probability of a state with spin I to be the ground state in many-body
systems is studied. Single-j shells with four-particle systems are examined in
detail. It is shown that the structure coefficients give a clue to understand the
problem why the spin-0 state is most likely to be the ground state.

PACS numbers: 21.60.Cs, 02.50.−r, 05.30.Fk, 24.10.Cn

1. Introduction

Order and chaos are usually completely conflicting concepts. However, recently Johnson et al
discovered a very interesting phenomenon [1]: the predominance of 0+ ground state (0g.s.)
of even fermion systems is obtained by diagonalizing a two-body scalar Hamiltonian, the
strength of which is randomly determined. This means that the orderly spectra appear as a
consequence of chaotic interactions. In nuclear physics, the angular momenta of the ground
states of even–even nuclei are always 0+ without an exception, which is believed to be a
consequence of the strong attractive short range interaction (pairing interaction) between like
nucleons. However, the work by Johnson et al suggests that the 0g.s. predominance arises
from the intrinsic features of the model space, and is independent of the specific character
of the nuclear force. Already many works have been done along the lines of this discovery
[2–13], and one of the most interesting and challenging aspects of this problem is how to
understand this observation.

There have been many efforts to understand the 0g.s. predominance. It was shown [8] first
in the sd-shell that this phenomenon is not an outcome of time reversal symmetry. Instead,
it might be rather a reflection of a large distribution width of the states. In [9], Mulhall
et al discussed the 0g.s. predominance within single-j shells by using geometric chaoticity
and uniformly changed random interactions. However, the general behaviour of the predicted
0g.s. probabilities [9] is quite different from those obtained by diagonalizing the Hamiltonian
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using random interactions. To simplify the problem, sp- and sd-bosons are extensively studied
by Bijker, Frank and Kusnezov [10, 11]. In single-j shells, it was shown that the width is
not the answer to the 0g.s. predominance [12]. Instead a feature of the structure coefficients
was suggested to provide a reasonable explanation of the angular momentum distribution of
the 0g.s. It was assumed [12], however, that the off-diagonal matrix elements were neglected
as an approximation. Because of this approximation, the method proposed therein has the
disadvantage that it is inapplicable to more complicated cases, e.g. large single-j shells.

It is easily noted that the disadvantage in [12] will be removed if we discuss the
Ig.s. probability for the mean energy of each angular momentum I. It is shown that the mean
energies of angular momentum I states are linear combinations of two-body matrix elements. In
such cases one could use the integral formula given in [12, 14] to predict the 0g.s. probabilities
for the mean energy of I = 0 states. Below we shall focus on single-j shells, but it is
emphasized that the discussion in this paper is valid in general cases, such as nucleons in
many-j shells, sd-boson systems, etc.

In this paper we study the probability of a state with angular momentum I to be the ground
state in many-body systems when two-body interactions are completely random. Single-j
shells with four-particle systems are extensively examined. It is shown that the feature of the
structure coefficients gives a clue to understand the problem why the spin I = 0 state is most
likely to be the ground state. This argument can be generalized to many-j systems and boson
systems.

2. Phenomenology

We define the terminology Ig.s. as follows:
Ig.s. = probability of I to be the angular momentum of the ground state.

Then the rules we obey are described as follows for any many-body system:

• the Hamiltonian consists of scalar two-body interactions with all possible combinations;
• two-body interactions are randomly taken with normal (Gaussian) distribution centred on

zero.

In this paper we deal with only single-j shells; thus we specify the interactions more
specifically. First j denotes the value of angular momentum of a single-j shell and n,
the number of particles in the shell. Two-body interactions are expressed as follows:

H =
2j−1∑
J=0

√
2J + 1GJ

[
A†(J )Ã(J )

](0)
(1)

with

A†(J ) = 1√
2

[a†
j a

†
j ](J ) Ã(J ) = − 1√

2
[ãj ãj ](J ) (J = 0, 2, . . . , 2j − 1). (2)

Here the strength of the interactions (GJ ) is determined according to normal distribution of
variance σ 2 = 1 (Gaussian distribution), that is,

P(GJ ) = 1√
2π

exp

[
− (GJ )2

2

]
. (3)

The matrix elements of the two-body interactions are calculated as follows:

HIβ ′β ≡ 〈jnIβ ′|H |jnIβ〉 =
∑

J

αJ
Iβ ′βGJ (4)
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Figure 1. The Ig.s. probability (large probability of finding I to be the angular momentum of the
ground state) for four-particle systems with different j .

where β is the additional quantum number which specifies the states uniquely and the structure
coefficients αJ

Iβ ′β are defined by

αJ
Iβ ′β ≡ 〈jnIβ ′|

√
2J + 1

[
A†(J )Ã(J )

](0)|jnIβ〉

= n(n − 1)

2

∑
K,γ

〈jn−2Kγ, j 2J |}jnIβ ′〉〈jn−2Kγ, j 2J |}jnIβ〉. (5)

Here 〈jn−2Kγ, j 2J |}jnIβ ′〉 are the two-body coefficients of fractional parentage (cfps). Using
the orthonormal relation for cfps we have a sum rule for αJ

Iβ ′β , that is,

∑
J

αJ
Iβ ′β = n(n − 1)

2
δβ ′β. (6)

Note that this is not the only sum rule for αJ
Iβ ′β . For instance, we have another sum rule,∑

J

J (J + 1)αJ
Iββ ′ = [I (I + 1) + j (j + 1)n(n − 2)] δββ ′. (7)

In figure 1 we show examples of the 0g.s. predominance. We assume the Box–Muller
method to produce random Gaussian two-body interactions centred on zero. We produce 1000
sets of GJ according to (3) and diagonalize the Hamiltonian (1). In these calculations j runs
from 7/2 to 33/2. The predominance of 0+ states as ground states is confirmed in this figure.
More precisely, for j larger than 15/2, the probability for 0+ states to be the ground states is
confirmed to be always the largest one.

We observe interesting oscillations in figure 1. The maxima of 0g.s. probabilities occur
at j = 9/2, j = 15/2, j = 21/5, j = 27/2 and so on. Here the shell-model dimension of
I = 0 states increases by one compared to the previous j value. Thus the relative importance
of I = 0 states increases at these j points.
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2.1. Simple case

In order to get an idea how Ig.s. is determined, we take up a very simple example as an
illustration [12]. We take up the example with j = 7/2 and n = 4. In this case we have
the total angular momentum I = 0, 22, 42, 5, 6, 8. The energy matrix elements are expressed
explicitly as follows:

E(β)

I
= 〈jnIβ|H |jnIβ〉 =

∑
J

αJ
IββGJ . (8)

Here energies are calculated by taking only diagonal matrix elements because off-diagonal
elements are zero in this special case (j = 7/2):

E0 = 3
2 G0 + 5

6G2 + 3
2G4 + 13

6 G6 18.2%

E
(1)
2 = 1

2G0 + 11
6 G2 + 3

2G4 + 13
6 G6 0.9%

E
(2)
2 = 0G0 + G2 + 42

11G4 + 13
11G6 33.3%

E
(1)

4 = 1
2G0 + 5

6G2 + 5
2G4 + 13

6 G6 0.0%

E
(2)
4 = 0G0 + 7

3G2 + G4 + 8
3G6 23.0%

E5 = 0G0 + 8
7G2 + 192

77 G4 + 26
11G6 0.0%

E6 = 1
2 G0 + 5

6G2 + 3
2G4 + 19

6 G6 0.0%

E8 = 0G0 + 10
21G2 + 129

77 G4 + 127
33 G6 24.2%

where the last number indicates the numerical probabilities of Ig.s., using the following
integration formula. Here the largest αJ

Iββ among all α for a given J is specified in bold font.
In the above equations one can see that there is a good correspondence between the largest
αJ

Iββ for a given J and the large Ig.s. It should be noted that this example does not show the
0g.s. predominance, though the 0g.s. probability is larger than the geometric value (12.5%).
This is because the value of j is small. As in figure 1, the 0g.s. predominance is confirmed if
j � 13/2.

A simple qualitative argument can be given as follows. For simplicity let us assume that
there is only one state for each angular momentum I,

EI =
∑

J

αJ
I GJ . (9)

Here we have used the abbreviation αJ
I which stands for diagonal αJ

Iββ . Suppose αJ ′
I ′ is the

largest for a fixed J ′ and GJ ′ < 0. Then

�EI ≡ EI − EI ′

= (
αJ ′

I − αJ ′
I ′
)
GJ ′ +

∑
J �=J ′

(
αJ

I − αJ
I ′
)
GJ

≡ E
(s)
I + E

(r)
I (10)

with

E
(s)
I =

{
0 for I = I ′

>0 others.
(11)
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Figure 2. The probability distribution of �EI . Here CJ ′ = αJ ′
I − αJ ′

I ′ < 0. The centre of the

distribution is shifted by E
(s)
I .

Here E
(s)
I gives the shift of the centre of the distribution and E

(r)
I are randomly distributed

by GJ �=J ′ . Figure 2 explains why �EI has a large probability (shown by the shadow) to be
positive when GJ ′ < 0 and vice versa.

In this simple case we have the analytical expression for the 0g.s. expressed in an
integration form as

0g.s. =
∫

dG0P(G0)

∫
dG2P(G2)

∫
dG4P(G4)

∫
dG6P(G6)

×
∫

dE0

∫
E0

dE
(1)
2

∫
E0

dE
(2)
2 · · ·

∫
E0

dE8 δ

(
E0 −

∑
J

αJ
0 GJ

)

× δ

(
E

(1)
2 −

∑
J

αJ
2(1)GJ

)
· · · δ

(
E8 −

∑
J

αJ
8 GJ

)
. (12)

This expression is exact because we do not need to take into account off-diagonal elements,
and henceforth, configuration mixings. This expression is valid even if we replace P(GJ ) by
other distributions, such as a uniform distribution. In a similar way other Ig.s. probabilities
can be evaluated using integration formulae. We have evaluated equation (12) numerically
and confirmed that the numerical Ig.s. probabilities are reproduced exactly within numerical
error bars.

2.2. More complicated systems

In more complicated systems we have many levels for each I. Thus we cannot ignore the
configuration mixings. Since each individual energy level is considered to be a deviation from
the mean energy level for the angular momentum I, we consider the mean energy level. The
mean energy level for I is expressed in terms of GJ as follows:

ĒI ≡ 1

nβ

nβ∑
β=1

EIβ = 1

nβ

Tr (H)I = 1

nβ

nβ∑
β=1

∑
J

αJ
IββGJ =

∑
J

ᾱJ
I GJ (13)

with ᾱJ
I = 1

nβ

∑nβ

β=1 αJ
Iββ . Here EIβ is an eigenenergy of the system with configuration

mixings and the number of levels belonging to angular momentum I is denoted by nβ.
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We have the following notable advantages to consider the mean energy level:

• We have only one state for each I and we can use the argument of the previous section.
Equation (9) is replaced by

EI =
∑

J

αJ
I GJ ⇒ ĒI =

∑
J

ᾱJ
I GJ . (14)

In this way we can employ the integration formula (12) in the same way.
• Since the trace is basis independent, ᾱJ

I is basis independent.
• We can use the sum rule for the mean ᾱJ

I ,∑
J

ᾱJ
I = n(n − 1)

2
. (15)

• The generalization to many-j shells is easy.

In order to address the original problem, we should consider each level. We consider the
variance of energy levels for each angular momentum I. The variance of energy levels is
calculated as follows. First the mean energy and mean energy variance are expressed in terms
of Hamiltonian matrix elements,

(ĒI )
2 =


 1

nβ

nβ∑
γ=1

EIγ




2

= 1

n2
β


 nβ∑

β=1

(HIββ)2 + 2
nβ∑

β ′>β=1

HIβ ′β ′HIββ


 (16)

E2
I = 1

nβ

nβ∑
γ=1

E2
Iγ = 2

nβ

nβ∑
β ′>β=1

(HIβ ′β)2 +
1

nβ

nβ∑
β=1

(HIββ)2. (17)

Then taking the ensemble average (taking GJ random), we have

〈
(ĒI )

2〉 =
〈

1

n2
β

(
nβ∑

β=1

(HIββ)2 + 2
N∑

β ′>β=1

HIβ ′β ′HIββ

)〉

= 1

n2
β

2j−1∑
J=0


 nβ∑

β=1

αJ
Iββ




2

=
2j−1∑
J=0

(
ᾱJ

I

)2
(18)

〈
E2

I

〉 =
〈

2

nβ

nβ∑
β ′>β=1

(HIβ ′β)2 +
1

nβ

nβ∑
β=1

(HIββ)2

〉

= 1

nβ

2j−1∑
J=0

nβ∑
β ′,β=1

(
αJ

Iβ ′β
)2

. (19)

Therefore the variance for each level is calculated as follows. First the variance of a certain
individual level EIβ is given by

(σIβ)2 = 〈
(EIβ − ĒI )

2
〉
. (20)

Since each individual level is equally independent, we have the common variance,

(σI )
2 = (σIβ)2 = 〈

(EIβ − ĒI )2
〉

=
〈
E2

I − (ĒI )
2
〉
= 1

nβ

2j−1∑
J=0

nβ∑
β ′,β=1

(
αJ

Iβ ′β
)2 −

2j−1∑
J=0

(
ᾱJ

I

)2
. (21)
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Table 1. The Ig.s. probability (up to fifth largest case) and Ig.s. average probability for j = 31/2
with four particles. The Ig.s. average probabilities are calculated in terms of the trace of the
Hamiltonian H for each angular momentum I. The SM-d is the shell model dimension for each I.
The definitions of σI , γI , σ

T
I , σ̃I , σ̃

T
I and �ĒI are given in the text.

Ig.s. probability Ig.s. average
I (%) probability (%) SM-d σI γI σT

I σ̃I σ̃ T
I �ĒI

0 30.8 11.5 5 3.15 1.57 3.52 2.14 2.65 −3.67
2 11.8 3.7 10 2.76 1.54 3.16 1.61 2.23 −4.26
4 4.0 0.4 14 2.54 1.55 2.97 1.39 2.08 −4.32
6 7.6 1.1 17 2.44 1.57 2.90 1.30 2.04 −4.38

56 6.4 23.3 1 0.00 4.10 4.10 0.00 4.10 0.00

We call (σI )
2 the individual width for I. The above expression is simplified as

(σI )
2 = 1

nβ

2j−1∑
J=0

Tr
[(

αJ
I − ᾱJ

I

)2
]
. (22)

Here it is seen that the deviation from the mean value is important to get a larger width.
In table 1 we show the Ig.s. probability (up to fifth largest case) and Ig.s. average

probability for the average energies in the case of j = 31/2 and n = 4. For the average energies
the largest probability to be the ground state is found for the highest spin I = Imax = 56+. The
probability of the 0+ average energy to be the lowest one comes next. However, we should be
aware that there is only one state for I = 56+. On the other hand, there are five 0+ states with
the largest individual width σI . Some of them are pushed down far from their average energy.
Thus we can expect that the probability of a 0+ state to be the ground state is much larger than
the 0g.s. average value (11.5%). In fact that happens in this example.

2.3. Generalization of the integration formula

Since the distribution for the mean energy of the angular momentum I is expressed as

P(ĒI ) =
2j−1∏
J=0

1√
2π

∫
dGJ exp

[
− (GJ )2

2

]
δ

(
ĒI −

2j−1∑
J=0

ᾱJ
I GJ

)
(23)

it is simplified as

P(ĒI ) = 1√
2πγI

exp

[
− (ĒI )

2

2 (γI )
2

]
(24)

with (γI )
2 = ∑2j−1

J=0

(
ᾱJ

I

)2
. We call (γI )

2 the width of mean energy levels for I. Then the total
width of each level is given by

(
σT

I

)2 = (σI )
2 + (γI )

2 = 1

nβ

2j−1∑
J=0

Tr
[(

αJ
I

)2
]
. (25)

We should not simply use this total width for arguing Ig.s. From numerical studies we
know that each level distributes according to a normal distribution. Therefore, it seems
plausible to consider the total width of the Gaussian distribution of each I for an account of
Ig.s., i.e. if the total width of levels of a certain I is the largest among all, the argument that the
Ig.s. probability is large is easy to take for granted. This argument is not true. From numerical
studies we observe that the state with highest angular momentum I = Imax gives the largest total
width and that with I = 0 gives the second largest. This happens due to the strong correlation
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between each state because we use a two-body random ensemble (TBRE) and not a Gaussian
orthogonal ensemble (GOE). This can be easily seen from the simple integral formula (12).
Here GJ are the independent parameters and E(β)

I
are not. In general we cannot express this

kind of integration formula explicitly because the diagonalization procedure prohibits us from
expressing each EIβ in terms of GJ due to mixing. Here we make the assumption that the
correlation between EIβ is wholly absorbed in the mean energy levels and that an individual
level distributes according to the Gaussian distribution of the mean energy level as its centre.

Upon the above assumption, the probability that the energy of a level with I1 is lower than
that of I2 is given by

P
(
EI1 < EI2

) =
2j−1∏
J=0

∫
dGJ

1√
2π

exp

[
− (GJ )2

2

]∫
dĒI1

∫
dĒI2 δ

(
ĒI1 −

2j−1∑
J=0

ᾱJ
I1
GJ

)

× δ

(
ĒI2 −

2j−1∑
J=0

ᾱJ
I2
GJ

)∫
dEI1P

(
EI1 , ĒI1 , σI1

) ∫
EI1

dEI2P
(
EI2 , ĒI2 , σI2

)
.

(26)

Here the distribution P(EI , ĒI , σI ) is defined as

P(EI , ĒI , σI ) = 1√
2πσI

exp

[
− (EI − ĒI )

2

2(σI )2

]
. (27)

In this derivation we have not made use of the fact that the selected state with EI should be
the lowest state among the states belonging to the same angular momentum I. Suppose that
the number of the shell-model dimension belonging to the angular momentum I is n. Then the
probability that the lowest state has the energy E

(1)

I may be written as

P̃
(
E

(1)
I , ĒI , σI

) ∝ P
(
E

(1)
I , ĒI , σI

) ∫
E

(1)
I

dE
(2)
I P

(
E

(2)
I , ĒI , σI

)

× · · · ×
∫

E
(1)
I

dE
(n)
I P

(
E

(n)
I , ĒI , σI

)
. (28)

Equation (28) is difficult to evaluate analytically, so we make another assumption that it is
approximately expressed as a single Gaussian distribution:

P̃
(
E

(1)
I , ĒI + �ĒI , σ̃I

) = 1√
2πσ̃I

exp

[
−
(
E

(1)
I − ĒI − �ĒI

)2

2(σ̃I )2

]
. (29)

Here the new width (σ̃I )
2 and the shift from the mean energy �ĒI are evaluated numerically.

It should be noted that these are strongly dependent on the number of the shell-model
dimension for the angular momentum I. Finally the probability that the lowest state with
angular momentum I1 is lower than that of I2 is given approximately as

P
(
EI1 < EI2

) =
2j−1∏
J=0

∫
dGJ

1√
2π

exp

[
− (GJ )2

2

]∫
dĒI1

∫
dĒI2δ

(
ĒI1 −

2j−1∑
J=0

ᾱJ
I1
GJ

)

× δ

(
ĒI2 −

2j−1∑
J=0

ᾱJ
I2
GJ

)∫
dEI1 P̃

(
EI1 , ĒI1 + �ĒI1 , σ̃I1

)

×
∫

EI1

dEI2 P̃
(
EI2 , ĒI2 + �ĒI2 , σ̃I2

)
. (30)

This expression is easily generalized for the 0g.s. as in equation (12).
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Figure 3. Predicted ᾱJ
I (dotted line) and actual values (solid line) for I = 0, 2, 4 as a function of

J with j = 31/2 and n = 4.

In table 1 numerically evaluated values of σ̃I ,�ĒI are given for each angular momentum
I. By consulting this table, we can qualitatively understand the 0g.s. predominance. The total
width σ̃ T

I is largest for I = 56 and the Ig.s. average probability becomes the largest. However,
the energy shift �ĒI is zero because there is only one state for I = 56. In contrast, the total
width σ̃ T

I is second largest for I = 0, but the energy shift is relatively large (−3.67).

3. Microscopic understanding

As we have seen in the previous sections, the 0g.s. are completely determined from the
structure of αJ

Iββ . In this sense the 0g.s. predominance problem is restated as follows. The
basis independent structure of αJ

0ββ ′ is in some sense different from the other αJ
I �=0ββ ′ . In

this sense we cannot go further, since the structure of αJ
Iββ is determined when we set up a

physical model. Each model defines the structure of αJ
Iββ . Then the next question is what kind

of model gives the 0g.s predominance. As far as we know all the nuclear shell models for
both fermions and bosons generically give the 0g.s predominance except for the pure d-boson
model [15]. However, we can look at this problem in a different way. We may assume that
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these geometrical factors are determined randomly. Here we take mean α for simplicity,

ᾱJ
I ≡ 1

nβ

nβ∑
β=1


n(n − 1)

2

∑
Kγ

(〈jn−2Kγ, j 2J |}jnIβ〉)2




→ 6

nβ

nβ∑
β=1

∑
Kγ

(〈j 2Kγ, j 2J |}j 4Iβ〉)2 for n = 4. (31)

We can assume that each (〈j 2Kγ, j 2J |}j 4Iβ〉)2 has the same value. Since the sum rule (12)
can determine that value, each mean value of α is determined. For instance, ᾱJ

I=0 for n = 4
is determined as follows. Since I = 0, we have K = J . It means that we have only one cfp
〈j 2J, j 2J |}j 4I = 0〉, which eventually determines ᾱJ

I=0 = 6
j+1/2 = 0.375 for j = 31/2.

In figure 3 we show predicted ᾱJ
I (dotted line) and actual values (solid line) for I = 0, 2, 4

as a function of J . We note that the predicted values well reproduce those of actual ᾱJ
I , but

fluctuations (differences between predicted and actual ones) are large for I = 0 compared
to other I. Since the crude value of ᾱJ

I is similar for all I, it is likely that I = 0 state has
the largest ᾱJ

I for a given J because of fluctuations. Our numerical calculation suggests that
this fluctuation is related to the number of possible cfp’s, that is, the greater the number of
contributed cfp’s, the less the fluctuation. However, we need a further study along this line.
So far this statistical theory is only successful for the mean energy level. We are searching for
a theory applicable to each individual level [16].

4. Summary and conclusions

In this paper we have shown our results for single-j shells with n = 4. The results here will be
generalized to many-j shells, boson systems and so on. A strong predominance of the spin-0
ground states is confirmed for systems with simple configurations for j = 7/2–33/2. The
probability of spin-0 ground states is stably the largest for 4-fermion systems with j � 15/2.
For the mean energy level we have shown that the spin-0 predominance is largely attributed to
the presence of large fluctuations in mean values of structure coefficients α. We can explain
why there are large fluctuations in α for spin-0 states by assuming that cfp’s are randomly
determined and the fact that the number of contributed cfp’s is small for I = 0. We have thus
found an explanation of the large probability of the 0+ ground state for the mean energy.

There remains, however, a question why we have the predominance of the 0+ ground
state in the individual levels. For that purpose our integration formula has been extended for
this individual case as in equation (30). Although this expression can be numerically evaluated
in principle, it is too complicated to evaluate for large j values. Moreover we still do not
understand the physics behind this problem even after evaluating this formula. However, the
qualitative understanding is obtained by looking at the new width (σ̃I )

2 and the shift from the
mean energy �ĒI .

Recently another efficient phenomenological approach is invented [16]. We first set one
of the two-body matrix elements of the problem to −1 and all the rest to zero and then see
which angular momentum I gives the lowest eigenvalue among all of the eigenvalues of this
many-body system. If the number of independent two-body interaction matrix elements is N,
the above procedure is repeated N times, with each of the matrix elements assuming the
privileged role of being set to −1. After all N calculations have been done, we simply count
how many times (denoted asNI ) the angular momentum I gives the lowest eigenvalue. Finally,
the Ig.s. probability is predicted as NI /N .
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The above procedure is confirmed to give a very good approximation for the original
Ig.s. probabilities [16]. We understand that this is not just a coincidence. However, the above
procedure is still a phenomenology and the fundamental physics behind this should be sought.
This is still an open question.
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